以前已经评估过使用轮毂,无人驾驶飞机,立方体,小萨特人等进行空中和地面操纵,感知和侦察的可行性。在所有这些解决方案中,基于气球的系统具有使其极具吸引力的优点,例如,简单的操作机构和持久的操作时间。但是,在基于气球的应用中,有许多障碍要克服,以实现强大的游荡性能。我们试图确定设计和控制挑战,并提出一个新型的机器人平台,该平台允许在火星陨石坑的侦察和感知中应用气球。这项工作简要涵盖了我们建议的驱动和模型预测控制设计框架,用于转向此类气球系统。我们提出了多个无人接地车辆(UGV)的协调伺服,以调节电缆驱动的气球中的张力,并将其连接到未成熟的悬挂有效载荷上。
translated by 谷歌翻译
尽管图表神经网络(GNNS)的最近成功,但大图上的培训GNN仍然具有挑战性。现有服务器的有限资源容量,图中节点之间的依赖关系以及由于集中存储和模型学习导致的隐私问题刺激了用于GNN训练的有效分布式算法的需要。然而,现有的分布式GNN训练方法强加过度的通信成本或妨碍其可扩展性的大存储器开销。为了克服这些问题,我们提出了一种名为$ \ text {{locally,正确的全球}} $(llcg)的通信有效的分布式GNN培训技术。为了减少通信和内存开销,LLCG中的每个本地计算机首先通过忽略不同机器之间的节点之间的依赖性在其本地数据上列出GNN,然后将本地训练的模型发送到服务器以获取周期性模型平均。但是,忽略节点依赖性可能导致显着的性能下降。要解决性能下降,我们建议在服务器上应用$ \ text {{{global server校正}} $以优化本地学习的模型。我们严格地分析了具有用于训练GNN的周期性模型的分布式方法的收敛性,并且显示了天真地应用周期模型平均但忽略节点之间的依赖性将受到不可缩小的残余错误。然而,通过利用所提出的全局校正来避免收敛速度,可以消除这种剩余误差。对现实世界数据集的广泛实验表明,LLCG可以显着提高效率而不会伤害性能。
translated by 谷歌翻译
图表卷积网络(GCNS)在各种半监督节点分类任务中取得了令人印象深刻的实证进步。尽管取得了巨大的成功,但在大型图形上培训GCNS遭受了计算和内存问题。规避这些障碍的潜在路径是基于采样的方法,其中在每个层处采样节点的子集。虽然最近的研究已经证明了基于采样的方法的有效性,但这些作品缺乏在现实环境下的理论融合担保,并且不能完全利用优化期间演出参数的信息。在本文中,我们描述并分析了一般的双差异减少模式,可以在内存预算下加速任何采样方法。所提出的模式的激励推动是仔细分析采样方法的差异,其中示出了诱导方差可以在前进传播期间分解为节点嵌入近似方差(Zeroth阶差异)(第一 - 顺序变化)在后向传播期间。理论上,从理论上分析所提出的架构的融合,并显示它享有$ \ Mathcal {O}(1 / T)$收敛率。我们通过将建议的模式集成在不同的采样方法中并将其应用于不同的大型实际图形来补充我们的理论结果。
translated by 谷歌翻译
This work presents an actuation framework for a bioinspired flapping drone called Aerobat. This drone, capable of producing dynamically versatile wing conformations, possesses 14 body joints and is tail-less. Therefore, in our robot, unlike mainstream flapping wing designs that are open-loop stable and have no pronounced morphing characteristics, the actuation, and closed-loop feedback design can pose significant challenges. We propose a framework based on integrating mechanical intelligence and control. In this design framework, small adjustments led by several tiny low-power actuators called primers can yield significant flight control roles owing to the robot's computational structures. Since they are incredibly lightweight, the system can host the primers in large numbers. In this work, we aim to show the feasibility of joint's motion regulation in Aerobat's untethered flights.
translated by 谷歌翻译
Flying animals, such as bats, fly through their fluidic environment as they create air jets and form wake structures downstream of their flight path. Bats, in particular, dynamically morph their highly flexible and dexterous armwing to manipulate their fluidic environment which is key to their agility and flight efficiency. This paper presents the theoretical and numerical analysis of the wake-structure-based gait design inspired by bat flight for flapping robots using the notion of reduced-order models and unsteady aerodynamic model incorporating Wagner function. The objective of this paper is to introduce the notion of gait design for flapping robots by systematically searching the design space in the context of optimization. The solution found using our gait design framework was used to design and test a flapping robot.
translated by 谷歌翻译
Machine reading comprehension (MRC) is a long-standing topic in natural language processing (NLP). The MRC task aims to answer a question based on the given context. Recently studies focus on multi-hop MRC which is a more challenging extension of MRC, which to answer a question some disjoint pieces of information across the context are required. Due to the complexity and importance of multi-hop MRC, a large number of studies have been focused on this topic in recent years, therefore, it is necessary and worth reviewing the related literature. This study aims to investigate recent advances in the multi-hop MRC approaches based on 31 studies from 2018 to 2022. In this regard, first, the multi-hop MRC problem definition will be introduced, then 31 models will be reviewed in detail with a strong focus on their multi-hop aspects. They also will be categorized based on their main techniques. Finally, a fine-grain comprehensive comparison of the models and techniques will be presented.
translated by 谷歌翻译
Multi-hop Machine reading comprehension is a challenging task with aim of answering a question based on disjoint pieces of information across the different passages. The evaluation metrics and datasets are a vital part of multi-hop MRC because it is not possible to train and evaluate models without them, also, the proposed challenges by datasets often are an important motivation for improving the existing models. Due to increasing attention to this field, it is necessary and worth reviewing them in detail. This study aims to present a comprehensive survey on recent advances in multi-hop MRC evaluation metrics and datasets. In this regard, first, the multi-hop MRC problem definition will be presented, then the evaluation metrics based on their multi-hop aspect will be investigated. Also, 15 multi-hop datasets have been reviewed in detail from 2017 to 2022, and a comprehensive analysis has been prepared at the end. Finally, open issues in this field have been discussed.
translated by 谷歌翻译
Recent semi-supervised and self-supervised methods have shown great success in the image and text domain by utilizing augmentation techniques. Despite such success, it is not easy to transfer this success to tabular domains. It is not easy to adapt domain-specific transformations from image and language to tabular data due to mixing of different data types (continuous data and categorical data) in the tabular domain. There are a few semi-supervised works on the tabular domain that have focused on proposing new augmentation techniques for tabular data. These approaches may have shown some improvement on datasets with low-cardinality in categorical data. However, the fundamental challenges have not been tackled. The proposed methods either do not apply to datasets with high-cardinality or do not use an efficient encoding of categorical data. We propose using conditional probability representation and an efficient progressively feature upgrading framework to effectively learn representations for tabular data in semi-supervised applications. The extensive experiments show superior performance of the proposed framework and the potential application in semi-supervised settings.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
Many existing datasets for lidar place recognition are solely representative of structured urban environments, and have recently been saturated in performance by deep learning based approaches. Natural and unstructured environments present many additional challenges for the tasks of long-term localisation but these environments are not represented in currently available datasets. To address this we introduce Wild-Places, a challenging large-scale dataset for lidar place recognition in unstructured, natural environments. Wild-Places contains eight lidar sequences collected with a handheld sensor payload over the course of fourteen months, containing a total of 67K undistorted lidar submaps along with accurate 6DoF ground truth. Our dataset contains multiple revisits both within and between sequences, allowing for both intra-sequence (i.e. loop closure detection) and inter-sequence (i.e. re-localisation) place recognition. We also benchmark several state-of-the-art approaches to demonstrate the challenges that this dataset introduces, particularly the case of long-term place recognition due to natural environments changing over time. Our dataset and code will be available at https://csiro-robotics.github.io/Wild-Places.
translated by 谷歌翻译